

SUSTAINABLE FAULT MANAGEMENT AND ERROR

CORRECTION FOR NEXT-GENERATION MAIN

MEMORIES.

1Guguloth Mounika,

M. Tech, VLSI System Design, Student,

Department of Electronics and Communication

Engineering,

JNTUH University College of Engineering Sulthanpur,

Sangareddy, Telangana,INDIA.

Email: gugulothmoinika123@gmail.com

2Mr.K. Prabhu,

Assistant Professor(C), Department of Electronics and

Communication Engineering,

JNTUH University College of Engineering

Sulthanpur, Sangareddy, Telangana,INDIA.

Email: kprabhu2003@gmail.com

ABSTRACT

The authors propose a sustainable and FPGA-

implementable approach to error correction in

deeply scaled memories, SFaultMap. The novel

fault map architecture optimizes operational and

embodied energy, achieving lower energy

consumption over a five-year lifetime under

moderate to high fault rates. SFaultMap+ enhances

fault tolerance by shifting focus from error

correction overhead to system-level sustainability

and hardware efficiency. The modular Verilog

design allows real-time fault masking, scalable

support for continuation segments, fault threshold

tuning, and fast decoding. The architecture has

been validated through functional simulation and

synthesis using Xilinx Vivado.

Index Terms: - SFaultMap, memory fault

tolerance, fpga, energy-efficient design, error

correction, continuation segment.

I.INTRODUCTION

The global energy demand has increased

significantly due to the growth of modern

computing systems, with memory subsystems

playing a crucial role in determining the

performance, reliability, and energy efficiency

of computing infrastructure. Memory

technologies like DRAM and emerging

alternatives such as PCM, STT-MRAM, and

ReRAM are playing a central role in

determining the performance, reliability, and

energy efficiency of computing infrastructure.

Traditionally, research and optimization efforts

have focused on reducing operational energy,

but now the focus is shifting to embodied

energy, which encompasses the energy used in

various processes such as extraction of raw

materials, wafer fabrication, photolithography,

chemical processing, assembly, testing,

packaging, and distribution.

Recent studies indicate that for advanced

DRAM modules used in hyperscale data centers,

Eembodied can exceed 50% of Etotal,

particularly when modules are discarded early

due to isolated hardware faults that could be

managed with effective error correction

mechanisms. This realization has led to a

redefinition of memory sustainability: it is no

longer sufficient to minimize runtime power

alone; true sustainability demands systems that

are fault-tolerant, repairable, and long-lived,

thus reducing frequent replacement and

lowering overall environmental impact.

As memory technologies scale to nanometer

regimes, they encounter increased vulnerability

to physical faults and manufacturing-induced

defects. To address these limitations, several

emerging memory technologies (EMTs) have

been introduced, offering new trade-offs in

density, energy efficiency, and non-volatility.

These include Phase-Change Memory (PCM),

Spin-Transfer Torque Magnetic RAM (STT-

MRAM), and Resistive RAM (ReRAM).

Fault management must evolve to operate at

finer granularities, recording defects at the bit

or word level using fault maps. This allows

higher-level logic to dynamically adapt.

Integrating robust Error-Correcting Codes

(ECC) and repair-based mechanisms is

essential for maintaining high reliability

without compromising density or energy

efficiency.

International journal of Engineering sciences and Advanced Technology Vol 25 Issue 07, July, 2025

ISSN:2250-3676 www.ijesat.com Page 819 of 828

mailto:gugulothmoinika123@gmail.com
mailto:kprabhu2003@gmail.com

Memory fault management is also pivotal in

edge devices and IoT systems, where tight

energy and area constraints prohibit over-

provisioning. Lightweight error detection and

graceful degradation, powered by fault-

awareness, help ensure continued operation

under degraded conditions.

In conclusion, sustainable main memory design

must embrace the reality that faults will become

more frequent as technology scales. The

strategy should be to detect, contain, and adapt

to them, prolonging useful life and reducing

energy per computation. This calls for cross-

layer innovation from circuit design to system

software.

II.LITERATURE SURVEY

 The relentless pursuit of

advancements in computing systems, driven by

demands for higher performance and greater

data processing capabilities, has inadvertently

led to a significant increase in global energy

consumption. A considerable and growing

portion of this energy is attributed to main

memory (DRAM) systems. Early research

efforts primarily focused on mitigating "use

phase" energy consumption, which refers to the

power consumed during a system's active

operation. While substantial progress has been

made in optimizing operational energy

efficiency, more recent studies have highlighted

a critical, often overlooked, aspect of the total

energy footprint: "embodied energy" [1], [2],

[3], [4]. Embodied energy encompasses the

energy expended throughout the entire lifecycle

of a product, from raw material extraction,

manufacturing, and transportation to assembly

and eventual disposal. Crucially, for integrated

circuits (ICs) and particularly for progressively

larger memory systems, embodied energy

constitutes a significant and rapidly increasing

contribution to the lifetime energy consumption

[10]. Life-cycle assessments have identified

semiconductor manufacturing as a dominant

factor in the environmental impact of modern

computing, with the energy consumed during

CMOS fabrication steadily rising since the

130nm node. Similarly, while DRAM

technology lags slightly, its energy per area is

consistently higher than CMOS and has also

begun to climb [10]. This growing embodied

energy fraction necessitates a shift in design

philosophy; truly sustainable system and

memory choices must integrate manufacturing

impact into energy-related decisions, moving

beyond sole optimization of operational energy.

Therefore, the development of sustainable

reliability solutions that concurrently address

both embodied and operational energy is

paramount.

Beyond energy considerations, the aggressive

scaling of memory technologies, driven by the

desire for higher density and lower cost,

introduces formidable challenges to memory

reliability. In conventional DRAM, as feature

sizes shrink, cells become more prone to

various fault mechanisms. Wordline crosstalk

faults, for instance, occur when "weak" cells in

a victim row experience premature charge

drainage due to repeated charging of adjacent

wordlines without their own cells being

refreshed [5]. Similarly, bitline crosstalk

manifests as fluctuations in the final read bit

values, originating from voltage levels of

bitlines connected to the same sense amplifiers,

often exacerbated by process variation and

minor defects within the memory cell structure

[6]. Another significant concern in DRAM is

reduced retention time, where data stored in

memory cells leaks prematurely, also a result of

process variation [11]. This directly conflicts

with efforts to reduce refresh power and has led

to proposals for selectively expanding refresh

intervals in conjunction with additional error

correction mechanisms [12].

The landscape of memory technologies is

further diversified by the advent of emerging

memory technologies (EMTs), designed to

overcome the fundamental limitations of

DRAM, such as volatility and high power

consumption [7]. EMTs like phase-change

memory (PCM) and spin-transfer torque

magnetic random-access memory (STT-

MRAM) are being explored for future main

memories due to their non-volatility, potential

for increased density, and reduced energy

consumption [7]. However, these promising

technologies introduce their own distinct

reliability challenges. PCM, for example, faces

endurance limitations, with write cycles

typically restricted to between 108 and 109

cycles, which often result in permanently

"stuck-at" faults [7]. Early failures of weak

cells due to process variation have also been

observed in PCM, underscoring the necessity of

robust fault tolerance throughout the lifetime of

scaled devices. Similarly, STT-MRAM can be

impacted by process variation, leading to

individual cell susceptibility to read disturbance

and false reads due to poor sensing margins

[13]. As the number of faulty cells is projected

to increase across both conventional and

emerging memory technologies with shrinking

technology nodes, scalable and sustainable fault

maps that meticulously record individual faulty

International journal of Engineering sciences and Advanced Technology Vol 25 Issue 07, July, 2025

ISSN:2250-3676 www.ijesat.com Page 820 of 828

cells are becoming increasingly indispensable

for maintaining data integrity and system

longevity.

In response to these pervasive reliability

concerns, various error correction schemes have

been developed and widely applied. Error

Correction Codes (ECC) are a cornerstone

solution for addressing general faults and single

event upsets. Single-bit error correction double-

bit error detection (SECDED) using Hamming

codes, including direct application in DRAM

with "chipkill" capabilities, is a common

implementation [14]. For low error rates, an

additional bank of redundant memory locations,

often referred to as row sparing, can be

employed, either as a standalone solution or in

combination with ECC and other error

correction schemes.

More specialized fault tolerance approaches

have also emerged. Error Correction Pointers

(ECP) represent a significant class of solutions,

initially proposed for PCM and subsequently

adapted for DRAM [8]. In ECP, each memory

row includes pointers to faulty bit locations

within that row, along with a bit to store the

correct value at the pointed location. Other

methods include partition and flip schemes that

attempt to encode data to avoid stuck-at faults.

To combat wordline crosstalk faults, a

probabilistic adjacent row activation method

has been proposed, which involves refreshing

impacted neighboring rows through a weighted

randomization [5]. Complementary to this,

counter-based refreshing mechanisms are used

to detect "hot rows" that require more frequent

refreshing [15]. For bitline crosstalk, the

Periodic Flip Encoding (PFE) method combines

encoding with knowledge of weak cell

locations to bypass problematic patterns [16].

A notable architectural scheme for DRAM

correction is ArchShield, which employs a

word-level fault map [9]. In ArchShield, each

memory row is tagged with two bits to indicate

whether it has no faults, a single fault, or

multiple faulty words. Rows containing faults

are duplicated using row sparing, with multi-

fault rows always accessing the redundant

copy. Single-fault rows only resort to the

redundant copy if an additional fault is detected

in conjunction with SECDED ECC. While

ArchShield operates effectively for incident

fault rates between 10−6 and 10−4,
demonstrating space efficiency and minimal

performance degradation (typically less than

2%), its overhead increases super-linearly at

higher error rates, rendering it non-viable in

such scenarios [9].

In contrast to these existing solutions, the

presented paper proposes the first centralized

fault map with bit-level granularity, termed

SFaultMap, explicitly designed for deeply

scaled next-generation memories. A key

differentiator of SFaultMap is its sensitivity to

the projected disproportionate contribution of

embodied energy in these highly scaled devices

[4], [10]. It achieves this by making strategic,

albeit seemingly unconventional, tradeoffs,

accepting small concessions in use-phase

energy and performance to enable solutions

with a minimal area footprint, thereby

optimizing for holistic energy consumption.

This focus on reducing the physical area

occupied by the fault map directly translates to

lower embodied energy, positioning SFaultMap

as a truly sustainable solution for the increasing

fault rates and complex reliability challenges

faced by the next-generation of main memories.

SFaultMaps are particularly advantageous for

next-generation memories due to their ability to

provide a very compact, bit-level fault

representation. This compact design results in a

significantly lower area footprint compared to

existing solutions like Error Correcting Pointers

(ECP) [8] and ArchShield [9], directly leading

to reduced embodied energy, which is a critical

concern as technology scales. The document

demonstrates that SFaultMap is consistently

more energy-efficient than ECP at moderate to

high fault rates (e.g., 10−2 and higher), even
when ECP would not guarantee fault tolerance.

Additionally, within ArchShield's intended

fault-incidence range, SFaultMap+ schemes

exhibit significantly lower area overheads,

making SFaultMap a more scalable and

efficient choice for managing increasing fault

densities in future memory generations. Even

with performance optimizations in SFaultMap+

(e.g., offset segment lookup and a fault-free

flag bit), which slightly increase embodied

energy, the operational energy advantages often

make SFaultMap+ the more sustainable

solution within typical usage lifetimes,

particularly for memory-dependent workloads.

This adaptability and focus on holistic

sustainability make SFaultMap a promising

solution for the evolving reliability challenges

of next-generation main memories.

III. EXISTING SYSTEM

 Traditional memory fault tolerance

schemes primarily rely on techniques such as

Error Correcting Codes (ECC), Error

Correction Pointers (ECP), and frameworks like

ArchShield. ECC, especially SECDED and

Chipkill, is widely adopted in DRAM to handle

soft errors; however, its effectiveness

significantly declines under multi-bit or burst

fault conditions. Additionally, ECC introduces

International journal of Engineering sciences and Advanced Technology Vol 25 Issue 07, July, 2025

ISSN:2250-3676 www.ijesat.com Page 821 of 828

non-negligible redundancy and offers no

awareness of embodied energy.

ECP attempts to correct hard faults at the bit

level using location pointers and replacement

bits. While effective for isolated faults, its

metadata overhead scales poorly with

increasing fault rates, making it unsustainable

in high-density memory arrays. Similarly,

ArchShield employs a fault map at the word

level, triggering row duplication and ECC-

based fallback recovery. While moderately

effective at low to medium error rates, its area

and energy costs grow non-linearly under

aggressive scaling.

IV PROPOSED SYSTEM

In contrast, the proposed SFaultMap

architecture offers a sustainable, fine-grained,

and energy-efficient solution. It uses compact

{valid, position} encodings to track faults at the

bit level and stores this metadata in segments

with minimal overhead. Its correction logic is

lightweight, using simple XOR operations, and

the entire system is implemented in modular

Verilog, optimized for FPGA synthesis.

A key feature of SFaultMap is its

sustainability-driven design, addressing both

operational and embodied energy. It avoids

unnecessary hardware redundancy and supports

runtime bypass for fault-free rows (SFaultMap+),

significantly reducing power consumption. The

design is scalable, synthesis-friendly, and

adaptable to the increasing fault densities found

in future DRAM and emerging non-volatile

memories.

V.SYSTEM DESIGN

The SFaultMap system is designed

using a clean, pipelined modular architecture

where each stage performs a precise role in

encoding, storing, and correcting memory faults.

The data flow progresses from raw faulty

memory row inputs through compact encoding

stages, into a memory storage module, and

finally into correction logic for masking errors

during runtime. Each module is carefully crafted

to ensure scalability, low overhead, and

synthesis-friendly implementation on modern

FPGA or ASIC platforms. This modularity not

only simplifies verification and debugging but

also allows for selective upgrades or extensions,

such as enabling continuation segments for rows

with high fault density or integrating advanced

fault prediction mechanisms based on historical

data patterns.

The system begins with a fault

identification and extraction unit that transforms

raw row data into a structured fault

representation. This representation is further

compressed and encapsulated into a segment

format that is both storage-efficient and easy to

decode. By separating the encoding and

correction responsibilities into distinct modules,

the SFaultMap system ensures that fault

management can be both proactive (during

memory testing) and reactive (during runtime

accesses). The FSM controller seamlessly

orchestrates this entire pipeline, transitioning

between states that correspond to fault packing,

segment writing, and post-write handling.

Moreover, the design maintains compatibility

with real-time memory correction workflows by

enabling the decoder and correction unit to

operate independently of the fault encoder.

What distinguishes this architecture is

its support for bit-level granularity, enabling

precise fault mapping instead of coarse row- or

block-level marking. This fine-grained fault

tracking significantly improves memory

utilization and longevity, especially in systems

where permanent bit-level faults are prevalent

due to technology scaling or aging. Furthermore,

the correction process is lightweight, involving

only an XOR operation with a fault mask, which

can be derived from decoded entries this keeps

both latency and energy consumption low.

Collectively, these features make the SFaultMap

methodology a robust and sustainable solution

for managing faults in next-generation high-

density memory systems, whether used

standalone or alongside conventional ECC

mechanisms.

International journal of Engineering sciences and Advanced Technology Vol 25 Issue 07, July, 2025

ISSN:2250-3676 www.ijesat.com Page 822 of 828

Fig: Block diagram for the implemented

design.

Fault_row_entry_packer

The pipeline is fault_row_entry_packer,

responsible for scanning a 512-bit memory row

and identifying which specific bits are faulty.

Each bit in the input vector fault_row represents

the health of one memory cell—if the bit is 1, it

signifies a fault at that position. The module

sequentially checks all 512 bits and records the

positions of up to MAX_FAULTS_PER_ROW

faults. Each fault position is paired with a 1-bit

valid flag, and these {valid, position} entries are

then packed into a flat vector. The total size of

this packed fault representation depends on the

fault pointer width PTR_BITS and the number of

allowed faults per row, as captured by the

equation:

Packed_Width=MAX_FAULTS_PER_

ROW×(PTR_BITS+1)

Fig: Flow of Fault_row+entry_packer

Segment writer

Once the fault entries have been packed,

the segment_writer module formats this data into

a segment suitable for memory storage. This

module accepts the packed fault entries, the 4-bit

fault count, and a single-bit continuation flag as

inputs. The continuation flag indicates whether

this segment continues from a previous fault

entry set, which is useful for fault rows with

more than the allowed number of faults.

Although the continuation logic is unused in the

simple implementation, the hardware is prepared

for this feature. The writer combines all input

fields into a single vector output called

segment_out. The total width of this segment is

defined by the equation:

Segment_Width=1 (continuation)+4 (fa

ult count)+Packed_Width

Sfaultmap_memory_model

The segment_out vector generated by

the writer module is passed to

sfaultmap_memory_model, which is a

synchronous memory array specifically used to

store fault map segments. This module simulates

on-chip memory or a register file where each

entry corresponds to one memory row's encoded

fault data. It supports standard memory access

with inputs for write enable (wr_en), data

(data_in), and address (addr), and it provides a

registered read output (data_out). This module

ensures that once fault entries are computed and

packed, they can be persistently stored and

accessed later for correction during read

operations. Addressing is controlled externally,

often incremented via an FSM, and allows

seamless integration into row-based memory

mapping.

Fig: sfault map memory model

implementation

sfaultmap_decoder

Once stored fault data is retrieved from

memory, it must be decoded back into actionable

correction information. This is the role of the

sfaultmap_decoder module. It receives the

encoded segment vector and unpacks it into its

International journal of Engineering sciences and Advanced Technology Vol 25 Issue 07, July, 2025

ISSN:2250-3676 www.ijesat.com Page 823 of 828

three original components: the continuation flag

(1 bit), the fault count (4 bits), and the packed

entries vector. These fields are extracted using

fixed bit slicing. The decoder enables

downstream logic, such as correction mask

generators, to reconstruct the original set of fault

locations. The logical breakdown of its

unpacking process is described by the

expression:

segment_in={continuation,fault_count,p

acked_entries}

memory_access_correction_unit

The final step in the pipeline is applying

correction logic to incoming memory data. This

is performed by the

memory_access_correction_unit. It receives raw

data (data_in) and a correction mask

(fault_mask) as input. The correction mask is

generated based on the decoded fault positions

and specifies which bits need to be flipped to

correct known faults. This module uses a bitwise

XOR operation between the raw input and the

mask to produce corrected data. The correction

logic is simple yet effective and follows the

Boolean equation:

data_out=data_in⊕fault_mask

sfaultmap_controller

The sfaultmap_controller is the

centralized FSM that manages and synchronizes

all other modules. It controls the system flow,

beginning from the idle state and advancing

through the PACK, WRITE, and DONE stages in

response to the start signal. During the PACK

state, the controller activates the

fault_row_entry_packer to identify faults. It then

enables the segment_writer and asserts write

enable signals to write the packed segment into

the memory model during the WRITE stage.

After successful storage, it transitions to DONE,

asserting a done flag to signal operation

completion. The FSM also manages memory

addresses, incrementing them after each write to

support sequential row access. Though

simplified, the FSM can be extended to support

more complex behaviors like multi-segment

continuation, dynamic thresholds, or runtime re-

correction.

Fig: sequence of actions performed by

the controller.

The flow is a controlled pipeline

starting from fault detection in a memory row

packing fault entries writing the fault segment

into memory signaling completion. The

sfaultmap_controller is the brain managing all

these steps, ensuring correct timing and data flow

between modules.

This modular and sequential design

enables efficient fault mapping, compact storage,

and streamlined control for scalable fault

management in next-generation memories.

VI. RESULTS

The implementation of the proposed

SFaultMap system was carried out in Verilog-

2001, targeting FPGA synthesis using Xilinx

Vivado 2018.2. The architecture comprises

modular units responsible for memory fault row

encoding, segment formatting, fault map storage,

and runtime correction. This section presents the

simulation obtained from validating each

submodule, with emphasis on functional

correctness, packing logic, memory model

behavior, and controller FSM sequencing.

Functional Verification

The SFaultMap controller was verified to

perform all intended operations in a pipelined and

deterministic manner. Simulation tests were

performed for multiple fault patterns, verifying

correctness in encoding, segment generation, and

proper memory storage through the following

steps:

Fault Detection and Packing:

The input signal fault_row (512 bits

wide) was simulated with synthetic fault

injections (bit positions set to 1). The

fault_row_entry_packer module

accurately detected the faulty bits and

stored their locations in the compressed

form {valid_bit, position} using an

internal loop. The output packed_entries

and fault_count were checked against

International journal of Engineering sciences and Advanced Technology Vol 25 Issue 07, July, 2025

ISSN:2250-3676 www.ijesat.com Page 824 of 828

expected values using waveform

monitoring and test assertions.

packed_entryi={validi,positioni},0≤i<

MAX_FAULTS_PER_ROW

Segment Formation and Metadata Encoding:

The segment_writer module then formats

the data into a 1-bit continuation flag, a

4-bit fault count, followed by the packed

fault entries. The segment is defined as:

segment_out={continuation,fault_count[3:0

],packed_entries}

For instance, if 3 faults were detected at

positions 5, 19, and 88, the segment output

correctly showed the packed binary encodings of

these indices with valid bits prepended.

Fault Segment Storage to Memory:

The sfaultmap_memory_model successfully

stored and retrieved fault segments. Simulations

verified that memory write operations occurred

only during the WRITE state, controlled by the

FSM within sfaultmap_controller. The signal

mem_wr_en enabled storage of segment outputs

at memory locations indexed by mem_addr.

Read-back verification ensured no corruption or

overwrites occurred during sequential operations.

Controller FSM Behavior:

The sfaultmap_controller transitions through

four states: IDLE → PACK → WRITE → DONE

→ IDLE. The start signal triggers the flow, and

the controller automatically generates the packed

data, stores it in memory, and asserts the done

signal at completion. Internal counters and

segment buffers were cleared at each transition.

FSM Transition Table:

Current

State
Condition

Next

State

IDLE start = 1 PACK

PACK (automatic) WRITE

WRITE (automatic) DONE

DONE (automatic) IDLE

Fault Segment Decoding and Runtime

Correction:

To validate decoding, the sfaultmap_decoder

parsed the previously written segment, extracting

the continuation, fault_count, and packed_entries.

These were compared against expected results

from the encoder to confirm bit-accurate

reconstruction.

Lastly, the memory_access_correction_unit

correctly performed bitwise XOR correction:

data_out=data_in⊕fault_mask

Test inputs demonstrated that corrupted

memory values were corrected precisely at the

expected fault locations, completing the end-to-

end verification of the fault encoding and

correction pipeline.

Fig: Implemenetd rtl schematic of

the proposed design.

Input data injected:

512'h0000000000000000000000000000

000000000000000000000000000000000

International journal of Engineering sciences and Advanced Technology Vol 25 Issue 07, July, 2025

ISSN:2250-3676 www.ijesat.com Page 825 of 828

000000000000000000000000000000000

00000000000000000000000000000800,

 Input Original data:

512'h0000000000000000000000000000

000000000000000000000000000000000

000000000000000000000000000000000

000000000000000000000000001234567

8

The first input represents a fault_row

with only bit position 11 set to 1,

indicating a fault at that position:

fault_row=211=0x000000000000000000

000000000000000000000000000000000

0000000000800

The second input is a valid data_in word

with the value:

data_in=0x000000000000000000000000

000000000000000000000000000000000

000000000000000000000000000000000

00000000000000000012345678

This test aims to validate the pipeline's

ability to encode the fault, store it,

decode it, generate a fault mask, and

correct the corrupted bit in data_in.

1. Fault Packing Stage

(fault_row_entry_packer)

The packer scans the fault_row,

identifies the first and only set bit at

position 11, and encodes it using the

format:

packed_entry={valid,position}={1′b1,9′

d11}=10′b1_00001011=10′h10B

Since only one fault is detected:

fault_count=1

The output becomes:

2. Segment Formation Stage

(segment_writer)

The writer constructs a memory segment

using:

segment_out={continuation,fault_count,

packed_entries

Substituting the values:

segment_out={1′b0,4′b0001,10′b100001

011,30′b0}

=45′b0_0001_100001011_00000000000

0000000000000000000

This becomes:

segment_out=45′h082C0

00000

This binary-encoded fault information is

then written to the memory model.

3. Memory Read & Decode

(sfaultmap_decoder)

The stored segment is read and decoded.

Bit slicing retrieves:

Continuation flag:

 continuation=0

Fault count:

 fault_count=4′b0001=1

Packed entries:

packed_entries[9:0]=10′b100001011={1′

b1,9′d11

4. Fault Mask Generation

International journal of Engineering sciences and Advanced Technology Vol 25 Issue 07, July, 2025

ISSN:2250-3676 www.ijesat.com Page 826 of 828

The decoder's output is used to generate

a fault mask. Only one fault is active

(valid=1), located at bit index 11:

Thus:

fault_mask=211=512′h00000000000000

000000000000000000000000000000000

000000000000000000000000000000000

000000000000000000000000000000000

000000000000800

5. Correction

(memory_access_correction_unit)

The correction logic uses XOR to flip

the faulty bit:

data_out=data_in⊕fault_

mask

With:

data_in=0x000000000000000000000000

000000000000000000000000000000000

000000000000000000000000000000000

00000000000000000012345678

We flip bit 11:

data_out=0x00000000000000000000000

000000000000000000000000000000000

000000000000000000000000000000000

000000000000000000012345E78

(Notice: 0x12345678 XOR 0x800 =

0x12345E78)

Thus, the corrected value has the fault bit

flipped, and this is verified against the

expected value to confirm system

integrity.

Fig:Design test for the 1-4 fault detection

and corrected output.

Fig: Fig:Design test for the 1-4 fault

detection and corrected output in

simulation.

REFERENCES

[1] A. Jones. Y. Chen, W. Collinge, H. Xu, L.
Schaefer, A. Landis, and M. Bilec, "Considering
fabrication in sustainable computing," ICCAD,
2013.

[2] M. A. Yao et al., "Comparative
assessment of life cycle assessment methods used
for personal computers.," Env. Sci. & Tech., Vol.
44, No. 19, 2010.

[3] P. Teehan and M. Kandlikar, "Comparing
Embodied Greenhouse Gas Emissions of Modern
Computing and Electronics Products," Env. Sci.
& Tech., Vol. 47, No. 9, 2013.

[4] D. Kline Jr. N. Parshook, X. Ge, E.
Brunvand, R. Melhem, P. K. Chrysanthis, and A.
K. Jones, "Holistically Evaluating the
Environmental Impacts in Modern Computing
Systems," IGSC, 2016.

[5] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H.
Lee, D. Lee, C. Wilkerson, K. Lai, and O. Mutlu,
"Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance
errors," ISCA, 2014.

[6] S. Khan, D. Lee, and O. Mutlu,
"PARBOR: An Efficient System-Level
Technique to Detect Data-Dependent Failures in
DRAM," DSN, 2016.

International journal of Engineering sciences and Advanced Technology Vol 25 Issue 07, July, 2025

ISSN:2250-3676 www.ijesat.com Page 827 of 828

[7] C. J. Xue, G. Sun, Y. Zhang, J. J. Yang, Y.
Chen, and H. Li, "Emerging non-volatile
memories: opportunities and challenges,"
CODES+ISSS, pp. 325-334, 2011.

[8] S. Schechter, G. H. Loh, K. Strauss, and
D. Burger, "Use ECP, not ECC, for hard failures
in resistive memories," ISCA, pp. 141-152, 2010.

[9] P. J. Nair, D.-H. Kim, and M. K. Qureshi,
"ArchShield: Architectural framework for
assisting DRAM scaling by tolerating high error
rates," ISCA, 2013.

[10] S. B. Boyd, Life-Cycle Assessment of
Semiconductors. Springer, 2012.

[11] C. H. Kim, K. H. Lee, and H. J. Lee,
"Retention-aware intelligent DRAM refresh," in
ISLPED, 2009.

[12] C.-H. Lin, D.-Y. Shen, Y.-J. Chen, C.-L.
Yang, and M. Wang, "SECRET: Selective error

correction for refresh energy reduction in
DRAMS," ICCD, pp. 67-74, 2012.

[13] S. M. Seyedzadeh, R. Maddah, A. Jones,
and R. Melhem, "Leveraging ECC to Mitigate
Read Disturbance, False Reads and Write Faults
in STT-RAM," DSN. pp. 215-226, June 2016.

[14] T. J. Dell, "A white paper on the benefits
of chipkill-correct ECC for PC server main
memory." IBM Microelectronics Division, pp. 1-
23, 1997.

[15] S. M. Seyedzadeh, A. K. Jones, and R.
Melhem, "Counter-Based Tree Structure for Row
Hammering Mitigation in DRAM" IEEE
Computer Architecture Letters.

[16] M. Seyedzadeh. D. Kline Jr, R. Melhem,
and A. K. Jones, "Mitigating Bitline Crosstalk
Noise in DRAM Memories," MEMSYS, 2017.

International journal of Engineering sciences and Advanced Technology Vol 25 Issue 07, July, 2025

ISSN:2250-3676 www.ijesat.com Page 828 of 828

