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ABSTRACT 

The authors propose a sustainable and FPGA-

implementable approach to error correction in 

deeply scaled memories, SFaultMap. The novel 

fault map architecture optimizes operational and 

embodied energy, achieving lower energy 

consumption over a five-year lifetime under 

moderate to high fault rates. SFaultMap+ enhances 

fault tolerance by shifting focus from error 

correction overhead to system-level sustainability 

and hardware efficiency. The modular Verilog 

design allows real-time fault masking, scalable 

support for continuation segments, fault threshold 

tuning, and fast decoding. The architecture has 

been validated through functional simulation and 

synthesis using Xilinx Vivado. 

Index Terms: -  SFaultMap, memory fault 

tolerance, fpga, energy-efficient design, error 

correction, continuation segment. 

I.INTRODUCTION 

The global energy demand has increased 

significantly due to the growth of modern 

computing systems, with memory subsystems 

playing a crucial role in determining the 

performance, reliability, and energy efficiency 

of computing infrastructure. Memory 

technologies like DRAM and emerging 

alternatives such as PCM, STT-MRAM, and 

ReRAM are playing a central role in 

determining the performance, reliability, and 

energy efficiency of computing infrastructure.  

 

Traditionally, research and optimization efforts 

have focused on reducing operational energy, 

but now the focus is shifting to embodied 

energy, which encompasses the energy used in 

various processes such as extraction of raw 

materials, wafer fabrication, photolithography, 

chemical processing, assembly, testing, 

packaging, and distribution. 

 

Recent studies indicate that for advanced 

DRAM modules used in hyperscale data centers, 

Eembodied can exceed 50% of Etotal, 

particularly when modules are discarded early 

due to isolated hardware faults that could be 

managed with effective error correction 

mechanisms. This realization has led to a 

redefinition of memory sustainability: it is no 

longer sufficient to minimize runtime power 

alone; true sustainability demands systems that 

are fault-tolerant, repairable, and long-lived, 

thus reducing frequent replacement and 

lowering overall environmental impact. 

 

As memory technologies scale to nanometer 

regimes, they encounter increased vulnerability 

to physical faults and manufacturing-induced 

defects. To address these limitations, several 

emerging memory technologies (EMTs) have 

been introduced, offering new trade-offs in 

density, energy efficiency, and non-volatility. 

These include Phase-Change Memory (PCM), 

Spin-Transfer Torque Magnetic RAM (STT-

MRAM), and Resistive RAM (ReRAM). 

Fault management must evolve to operate at 

finer granularities, recording defects at the bit 

or word level using fault maps. This allows 

higher-level logic to dynamically adapt. 

Integrating robust Error-Correcting Codes 

(ECC) and repair-based mechanisms is 

essential for maintaining high reliability 

without compromising density or energy 

efficiency. 
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Memory fault management is also pivotal in 

edge devices and IoT systems, where tight 

energy and area constraints prohibit over-

provisioning. Lightweight error detection and 

graceful degradation, powered by fault-

awareness, help ensure continued operation 

under degraded conditions. 

 

In conclusion, sustainable main memory design 

must embrace the reality that faults will become 

more frequent as technology scales. The 

strategy should be to detect, contain, and adapt 

to them, prolonging useful life and reducing 

energy per computation. This calls for cross-

layer innovation from circuit design to system 

software. 

 

 

II.LITERATURE SURVEY 

 

 The relentless pursuit of 

advancements in computing systems, driven by 

demands for higher performance and greater 

data processing capabilities, has inadvertently 

led to a significant increase in global energy 

consumption. A considerable and growing 

portion of this energy is attributed to main 

memory (DRAM) systems. Early research 

efforts primarily focused on mitigating "use 

phase" energy consumption, which refers to the 

power consumed during a system's active 

operation. While substantial progress has been 

made in optimizing operational energy 

efficiency, more recent studies have highlighted 

a critical, often overlooked, aspect of the total 

energy footprint: "embodied energy" [1], [2], 

[3], [4]. Embodied energy encompasses the 

energy expended throughout the entire lifecycle 

of a product, from raw material extraction, 

manufacturing, and transportation to assembly 

and eventual disposal. Crucially, for integrated 

circuits (ICs) and particularly for progressively 

larger memory systems, embodied energy 

constitutes a significant and rapidly increasing 

contribution to the lifetime energy consumption 

[10]. Life-cycle assessments have identified 

semiconductor manufacturing as a dominant 

factor in the environmental impact of modern 

computing, with the energy consumed during 

CMOS fabrication steadily rising since the 

130nm node. Similarly, while DRAM 

technology lags slightly, its energy per area is 

consistently higher than CMOS and has also 

begun to climb [10]. This growing embodied 

energy fraction necessitates a shift in design 

philosophy; truly sustainable system and 

memory choices must integrate manufacturing 

impact into energy-related decisions, moving 

beyond sole optimization of operational energy. 

Therefore, the development of sustainable 

reliability solutions that concurrently address 

both embodied and operational energy is 

paramount. 

Beyond energy considerations, the aggressive 

scaling of memory technologies, driven by the 

desire for higher density and lower cost, 

introduces formidable challenges to memory 

reliability. In conventional DRAM, as feature 

sizes shrink, cells become more prone to 

various fault mechanisms. Wordline crosstalk 

faults, for instance, occur when "weak" cells in 

a victim row experience premature charge 

drainage due to repeated charging of adjacent 

wordlines without their own cells being 

refreshed [5]. Similarly, bitline crosstalk 

manifests as fluctuations in the final read bit 

values, originating from voltage levels of 

bitlines connected to the same sense amplifiers, 

often exacerbated by process variation and 

minor defects within the memory cell structure 

[6]. Another significant concern in DRAM is 

reduced retention time, where data stored in 

memory cells leaks prematurely, also a result of 

process variation [11]. This directly conflicts 

with efforts to reduce refresh power and has led 

to proposals for selectively expanding refresh 

intervals in conjunction with additional error 

correction mechanisms [12]. 

The landscape of memory technologies is 

further diversified by the advent of emerging 

memory technologies (EMTs), designed to 

overcome the fundamental limitations of 

DRAM, such as volatility and high power 

consumption [7]. EMTs like phase-change 

memory (PCM) and spin-transfer torque 

magnetic random-access memory (STT-

MRAM) are being explored for future main 

memories due to their non-volatility, potential 

for increased density, and reduced energy 

consumption [7]. However, these promising 

technologies introduce their own distinct 

reliability challenges. PCM, for example, faces 

endurance limitations, with write cycles 

typically restricted to between 108 and 109 

cycles, which often result in permanently 

"stuck-at" faults [7]. Early failures of weak 

cells due to process variation have also been 

observed in PCM, underscoring the necessity of 

robust fault tolerance throughout the lifetime of 

scaled devices. Similarly, STT-MRAM can be 

impacted by process variation, leading to 

individual cell susceptibility to read disturbance 

and false reads due to poor sensing margins 

[13]. As the number of faulty cells is projected 

to increase across both conventional and 

emerging memory technologies with shrinking 

technology nodes, scalable and sustainable fault 

maps that meticulously record individual faulty 
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cells are becoming increasingly indispensable 

for maintaining data integrity and system 

longevity. 

In response to these pervasive reliability 

concerns, various error correction schemes have 

been developed and widely applied. Error 

Correction Codes (ECC) are a cornerstone 

solution for addressing general faults and single 

event upsets. Single-bit error correction double-

bit error detection (SECDED) using Hamming 

codes, including direct application in DRAM 

with "chipkill" capabilities, is a common 

implementation [14]. For low error rates, an 

additional bank of redundant memory locations, 

often referred to as row sparing, can be 

employed, either as a standalone solution or in 

combination with ECC and other error 

correction schemes. 

More specialized fault tolerance approaches 

have also emerged. Error Correction Pointers 

(ECP) represent a significant class of solutions, 

initially proposed for PCM and subsequently 

adapted for DRAM [8]. In ECP, each memory 

row includes pointers to faulty bit locations 

within that row, along with a bit to store the 

correct value at the pointed location. Other 

methods include partition and flip schemes that 

attempt to encode data to avoid stuck-at faults. 

To combat wordline crosstalk faults, a 

probabilistic adjacent row activation method 

has been proposed, which involves refreshing 

impacted neighboring rows through a weighted 

randomization [5]. Complementary to this, 

counter-based refreshing mechanisms are used 

to detect "hot rows" that require more frequent 

refreshing [15]. For bitline crosstalk, the 

Periodic Flip Encoding (PFE) method combines 

encoding with knowledge of weak cell 

locations to bypass problematic patterns [16]. 

A notable architectural scheme for DRAM 

correction is ArchShield, which employs a 

word-level fault map [9]. In ArchShield, each 

memory row is tagged with two bits to indicate 

whether it has no faults, a single fault, or 

multiple faulty words. Rows containing faults 

are duplicated using row sparing, with multi-

fault rows always accessing the redundant 

copy. Single-fault rows only resort to the 

redundant copy if an additional fault is detected 

in conjunction with SECDED ECC. While 

ArchShield operates effectively for incident 

fault rates between 10−6 and 10−4, 
demonstrating space efficiency and minimal 

performance degradation (typically less than 

2%), its overhead increases super-linearly at 

higher error rates, rendering it non-viable in 

such scenarios [9]. 

In contrast to these existing solutions, the 

presented paper proposes the first centralized 

fault map with bit-level granularity, termed 

SFaultMap, explicitly designed for deeply 

scaled next-generation memories. A key 

differentiator of SFaultMap is its sensitivity to 

the projected disproportionate contribution of 

embodied energy in these highly scaled devices 

[4], [10]. It achieves this by making strategic, 

albeit seemingly unconventional, tradeoffs, 

accepting small concessions in use-phase 

energy and performance to enable solutions 

with a minimal area footprint, thereby 

optimizing for holistic energy consumption. 

This focus on reducing the physical area 

occupied by the fault map directly translates to 

lower embodied energy, positioning SFaultMap 

as a truly sustainable solution for the increasing 

fault rates and complex reliability challenges 

faced by the next-generation of main memories. 

SFaultMaps are particularly advantageous for 

next-generation memories due to their ability to 

provide a very compact, bit-level fault 

representation. This compact design results in a 

significantly lower area footprint compared to 

existing solutions like Error Correcting Pointers 

(ECP) [8] and ArchShield [9], directly leading 

to reduced embodied energy, which is a critical 

concern as technology scales. The document 

demonstrates that SFaultMap is consistently 

more energy-efficient than ECP at moderate to 

high fault rates (e.g., 10−2 and higher), even 
when ECP would not guarantee fault tolerance. 

Additionally, within ArchShield's intended 

fault-incidence range, SFaultMap+ schemes 

exhibit significantly lower area overheads, 

making SFaultMap a more scalable and 

efficient choice for managing increasing fault 

densities in future memory generations. Even 

with performance optimizations in SFaultMap+ 

(e.g., offset segment lookup and a fault-free 

flag bit), which slightly increase embodied 

energy, the operational energy advantages often 

make SFaultMap+ the more sustainable 

solution within typical usage lifetimes, 

particularly for memory-dependent workloads. 

This adaptability and focus on holistic 

sustainability make SFaultMap a promising 

solution for the evolving reliability challenges 

of next-generation main memories. 

 

 

III. EXISTING SYSTEM 

 

 Traditional memory fault tolerance 

schemes primarily rely on techniques such as 

Error Correcting Codes (ECC), Error 

Correction Pointers (ECP), and frameworks like 

ArchShield. ECC, especially SECDED and 

Chipkill, is widely adopted in DRAM to handle 

soft errors; however, its effectiveness 

significantly declines under multi-bit or burst 

fault conditions. Additionally, ECC introduces 
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non-negligible redundancy and offers no 

awareness of embodied energy. 

ECP attempts to correct hard faults at the bit 

level using location pointers and replacement 

bits. While effective for isolated faults, its 

metadata overhead scales poorly with 

increasing fault rates, making it unsustainable 

in high-density memory arrays. Similarly, 

ArchShield employs a fault map at the word 

level, triggering row duplication and ECC-

based fallback recovery. While moderately 

effective at low to medium error rates, its area 

and energy costs grow non-linearly under 

aggressive scaling. 

 

 

IV PROPOSED SYSTEM 

 

In contrast, the proposed SFaultMap 

architecture offers a sustainable, fine-grained, 

and energy-efficient solution. It uses compact 

{valid, position} encodings to track faults at the 

bit level and stores this metadata in segments 

with minimal overhead. Its correction logic is 

lightweight, using simple XOR operations, and 

the entire system is implemented in modular 

Verilog, optimized for FPGA synthesis. 

A key feature of SFaultMap is its 

sustainability-driven design, addressing both 

operational and embodied energy. It avoids 

unnecessary hardware redundancy and supports 

runtime bypass for fault-free rows (SFaultMap+), 

significantly reducing power consumption. The 

design is scalable, synthesis-friendly, and 

adaptable to the increasing fault densities found 

in future DRAM and emerging non-volatile 

memories. 

 

 

V.SYSTEM DESIGN 

 

The SFaultMap system is designed 

using a clean, pipelined modular architecture 

where each stage performs a precise role in 

encoding, storing, and correcting memory faults. 

The data flow progresses from raw faulty 

memory row inputs through compact encoding 

stages, into a memory storage module, and 

finally into correction logic for masking errors 

during runtime. Each module is carefully crafted 

to ensure scalability, low overhead, and 

synthesis-friendly implementation on modern 

FPGA or ASIC platforms. This modularity not 

only simplifies verification and debugging but 

also allows for selective upgrades or extensions, 

such as enabling continuation segments for rows 

with high fault density or integrating advanced 

fault prediction mechanisms based on historical 

data patterns. 

The system begins with a fault 

identification and extraction unit that transforms 

raw row data into a structured fault 

representation. This representation is further 

compressed and encapsulated into a segment 

format that is both storage-efficient and easy to 

decode. By separating the encoding and 

correction responsibilities into distinct modules, 

the SFaultMap system ensures that fault 

management can be both proactive (during 

memory testing) and reactive (during runtime 

accesses). The FSM controller seamlessly 

orchestrates this entire pipeline, transitioning 

between states that correspond to fault packing, 

segment writing, and post-write handling. 

Moreover, the design maintains compatibility 

with real-time memory correction workflows by 

enabling the decoder and correction unit to 

operate independently of the fault encoder. 

What distinguishes this architecture is 

its support for bit-level granularity, enabling 

precise fault mapping instead of coarse row- or 

block-level marking. This fine-grained fault 

tracking significantly improves memory 

utilization and longevity, especially in systems 

where permanent bit-level faults are prevalent 

due to technology scaling or aging. Furthermore, 

the correction process is lightweight, involving 

only an XOR operation with a fault mask, which 

can be derived from decoded entries this keeps 

both latency and energy consumption low. 

Collectively, these features make the SFaultMap 

methodology a robust and sustainable solution 

for managing faults in next-generation high-

density memory systems, whether used 

standalone or alongside conventional ECC 

mechanisms. 
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Fig: Block diagram for the implemented 

design. 

Fault_row_entry_packer 

The pipeline is fault_row_entry_packer, 

responsible for scanning a 512-bit memory row 

and identifying which specific bits are faulty. 

Each bit in the input vector fault_row represents 

the health of one memory cell—if the bit is 1, it 

signifies a fault at that position. The module 

sequentially checks all 512 bits and records the 

positions of up to MAX_FAULTS_PER_ROW 

faults. Each fault position is paired with a 1-bit 

valid flag, and these {valid, position} entries are 

then packed into a flat vector. The total size of 

this packed fault representation depends on the 

fault pointer width PTR_BITS and the number of 

allowed faults per row, as captured by the 

equation: 

Packed_Width=MAX_FAULTS_PER_

ROW×(PTR_BITS+1) 

 

Fig: Flow of Fault_row+entry_packer 

Segment writer 

Once the fault entries have been packed, 

the segment_writer module formats this data into 

a segment suitable for memory storage. This 

module accepts the packed fault entries, the 4-bit 

fault count, and a single-bit continuation flag as 

inputs. The continuation flag indicates whether 

this segment continues from a previous fault 

entry set, which is useful for fault rows with 

more than the allowed number of faults. 

Although the continuation logic is unused in the 

simple implementation, the hardware is prepared 

for this feature. The writer combines all input 

fields into a single vector output called 

segment_out. The total width of this segment is 

defined by the equation: 

Segment_Width=1 (continuation)+4 (fa

ult count)+Packed_Width 

Sfaultmap_memory_model 

The segment_out vector generated by 

the writer module is passed to 

sfaultmap_memory_model, which is a 

synchronous memory array specifically used to 

store fault map segments. This module simulates 

on-chip memory or a register file where each 

entry corresponds to one memory row's encoded 

fault data. It supports standard memory access 

with inputs for write enable (wr_en), data 

(data_in), and address (addr), and it provides a 

registered read output (data_out). This module 

ensures that once fault entries are computed and 

packed, they can be persistently stored and 

accessed later for correction during read 

operations. Addressing is controlled externally, 

often incremented via an FSM, and allows 

seamless integration into row-based memory 

mapping. 

 
Fig: sfault map memory model 

implementation 

sfaultmap_decoder 

Once stored fault data is retrieved from 

memory, it must be decoded back into actionable 

correction information. This is the role of the 

sfaultmap_decoder module. It receives the 

encoded segment vector and unpacks it into its 
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three original components: the continuation flag 

(1 bit), the fault count (4 bits), and the packed 

entries vector. These fields are extracted using 

fixed bit slicing. The decoder enables 

downstream logic, such as correction mask 

generators, to reconstruct the original set of fault 

locations. The logical breakdown of its 

unpacking process is described by the 

expression: 

segment_in={continuation,fault_count,p

acked_entries} 

memory_access_correction_unit 

The final step in the pipeline is applying 

correction logic to incoming memory data. This 

is performed by the 

memory_access_correction_unit. It receives raw 

data (data_in) and a correction mask 

(fault_mask) as input. The correction mask is 

generated based on the decoded fault positions 

and specifies which bits need to be flipped to 

correct known faults. This module uses a bitwise 

XOR operation between the raw input and the 

mask to produce corrected data. The correction 

logic is simple yet effective and follows the 

Boolean equation: 

data_out=data_in⊕fault_mask 

 

 

sfaultmap_controller 

The sfaultmap_controller is the 

centralized FSM that manages and synchronizes 

all other modules. It controls the system flow, 

beginning from the idle state and advancing 

through the PACK, WRITE, and DONE stages in 

response to the start signal. During the PACK 

state, the controller activates the 

fault_row_entry_packer to identify faults. It then 

enables the segment_writer and asserts write 

enable signals to write the packed segment into 

the memory model during the WRITE stage. 

After successful storage, it transitions to DONE, 

asserting a done flag to signal operation 

completion. The FSM also manages memory 

addresses, incrementing them after each write to 

support sequential row access. Though 

simplified, the FSM can be extended to support 

more complex behaviors like multi-segment 

continuation, dynamic thresholds, or runtime re-

correction. 

 
Fig: sequence of actions performed by 

the controller. 

The flow is a controlled pipeline 

starting from fault detection in a memory row 

packing fault entries writing the fault segment 

into memory signaling completion. The 

sfaultmap_controller is the brain managing all 

these steps, ensuring correct timing and data flow 

between modules. 

This modular and sequential design 

enables efficient fault mapping, compact storage, 

and streamlined control for scalable fault 

management in next-generation memories. 

 

 

VI. RESULTS 

 

 

The implementation of the proposed 

SFaultMap system was carried out in Verilog-

2001, targeting FPGA synthesis using Xilinx 

Vivado 2018.2. The architecture comprises 

modular units responsible for memory fault row 

encoding, segment formatting, fault map storage, 

and runtime correction. This section presents the 

simulation obtained from validating each 

submodule, with emphasis on functional 

correctness, packing logic, memory model 

behavior, and controller FSM sequencing. 

Functional Verification 

The SFaultMap controller was verified to 

perform all intended operations in a pipelined and 

deterministic manner. Simulation tests were 

performed for multiple fault patterns, verifying 

correctness in encoding, segment generation, and 

proper memory storage through the following 

steps: 

Fault Detection and Packing: 

The input signal fault_row (512 bits 

wide) was simulated with synthetic fault 

injections (bit positions set to 1). The 

fault_row_entry_packer module 

accurately detected the faulty bits and 

stored their locations in the compressed 

form {valid_bit, position} using an 

internal loop. The output packed_entries 

and fault_count were checked against 
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expected values using waveform 

monitoring and test assertions. 

packed_entryi={validi,positioni},0≤i<

MAX_FAULTS_PER_ROW 

Segment Formation and Metadata Encoding: 

The segment_writer module then formats 

the data into a 1-bit continuation flag, a 

4-bit fault count, followed by the packed 

fault entries. The segment is defined as: 

segment_out={continuation,fault_count[3:0

],packed_entries} 

For instance, if 3 faults were detected at 

positions 5, 19, and 88, the segment output 

correctly showed the packed binary encodings of 

these indices with valid bits prepended. 

Fault Segment Storage to Memory: 

The sfaultmap_memory_model successfully 

stored and retrieved fault segments. Simulations 

verified that memory write operations occurred 

only during the WRITE state, controlled by the 

FSM within sfaultmap_controller. The signal 

mem_wr_en enabled storage of segment outputs 

at memory locations indexed by mem_addr. 

Read-back verification ensured no corruption or 

overwrites occurred during sequential operations. 

Controller FSM Behavior: 

The sfaultmap_controller transitions through 

four states: IDLE → PACK → WRITE → DONE 

→ IDLE. The start signal triggers the flow, and 

the controller automatically generates the packed 

data, stores it in memory, and asserts the done 

signal at completion. Internal counters and 

segment buffers were cleared at each transition. 

 

 

 

FSM Transition Table: 

Current 

State 
Condition 

Next 

State 

IDLE start = 1 PACK 

PACK (automatic) WRITE 

WRITE (automatic) DONE 

DONE (automatic) IDLE 

 

Fault Segment Decoding and Runtime 

Correction: 

To validate decoding, the sfaultmap_decoder 

parsed the previously written segment, extracting 

the continuation, fault_count, and packed_entries. 

These were compared against expected results 

from the encoder to confirm bit-accurate 

reconstruction. 

Lastly, the memory_access_correction_unit 

correctly performed bitwise XOR correction: 

data_out=data_in⊕fault_mask 

Test inputs demonstrated that corrupted 

memory values were corrected precisely at the 

expected fault locations, completing the end-to-

end verification of the fault encoding and 

correction pipeline. 

 

Fig: Implemenetd rtl schematic of 

the proposed design. 

Input data injected: 

512'h0000000000000000000000000000

000000000000000000000000000000000
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000000000000000000000000000000000

00000000000000000000000000000800, 

  Input Original data:  

512'h0000000000000000000000000000

000000000000000000000000000000000

000000000000000000000000000000000

000000000000000000000000001234567

8 

The first input represents a fault_row 

with only bit position 11 set to 1, 

indicating a fault at that position: 

fault_row=211=0x000000000000000000

000000000000000000000000000000000

0000000000800  

The second input is a valid data_in word 

with the value: 

data_in=0x000000000000000000000000

000000000000000000000000000000000

000000000000000000000000000000000

00000000000000000012345678  

This test aims to validate the pipeline's 

ability to encode the fault, store it, 

decode it, generate a fault mask, and 

correct the corrupted bit in data_in. 

1. Fault Packing Stage 

(fault_row_entry_packer) 

The packer scans the fault_row, 

identifies the first and only set bit at 

position 11, and encodes it using the 

format: 

packed_entry={valid,position}={1′b1,9′

d11}=10′b1_00001011=10′h10B  

Since only one fault is detected: 

fault_count=1  

The output becomes: 

 

2. Segment Formation Stage 

(segment_writer) 

The writer constructs a memory segment 

using: 

segment_out={continuation,fault_count,

packed_entries  

Substituting the values: 

segment_out={1′b0,4′b0001,10′b100001

011,30′b0} 

                    

=45′b0_0001_100001011_00000000000

0000000000000000000  

This becomes: 

segment_out=45′h082C0

00000  

This binary-encoded fault information is 

then written to the memory model. 

3. Memory Read & Decode 

(sfaultmap_decoder) 

The stored segment is read and decoded. 

Bit slicing retrieves: 

Continuation flag: 

  continuation=0 

Fault count: 

  fault_count=4′b0001=1 

Packed entries: 

packed_entries[9:0]=10′b100001011={1′

b1,9′d11  

4. Fault Mask Generation 
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The decoder's output is used to generate 

a fault mask. Only one fault is active 

(valid=1), located at bit index 11: 

 

  

Thus: 

fault_mask=211=512′h00000000000000

000000000000000000000000000000000

000000000000000000000000000000000

000000000000000000000000000000000

000000000000800  

5. Correction 

(memory_access_correction_unit) 

The correction logic uses XOR to flip 

the faulty bit: 

data_out=data_in⊕fault_

mask 

With: 

data_in=0x000000000000000000000000

000000000000000000000000000000000

000000000000000000000000000000000

00000000000000000012345678  

We flip bit 11: 

data_out=0x00000000000000000000000

000000000000000000000000000000000

000000000000000000000000000000000

000000000000000000012345E78  

(Notice: 0x12345678 XOR 0x800 = 

0x12345E78) 

Thus, the corrected value has the fault bit 

flipped, and this is verified against the 

expected value to confirm system 

integrity. 

 

Fig:Design test for the 1-4 fault detection 

and corrected output. 

 

Fig: Fig:Design test for the 1-4 fault 

detection and corrected output in 

simulation. 
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